The geekin function fits generalized estimating equations but where the correlation structure is given as linear function of (scaled) fixed correlation structures.
geekin(formula, family = gaussian, data, weights, subset, id, na.action, control = geepack::geese.control(...), varlist, ...)
formula | See corresponding documentation to |
---|---|
family | See corresponding documentation to |
data | See corresponding documentation to |
weights | See corresponding documentation to |
subset | See corresponding documentation to |
id | a vector which identifies the clusters. The length of |
na.action | See corresponding documentation to |
control | See corresponding documentation to |
varlist | a list containing one or more matrix or bdsmatrix objects that represent the correlation structures |
… | further arguments passed to or from other methods. |
Returns an object of type geeglm
.
The geekin function is essentially a wrapper function to geeglm
.
Through the varlist argument, it allows for correlation structures of the
form
R = sum_i=1^k alpha_i R_i
where alpha_i are(nuisance) scale parameters that are used to scale the off-diagonal elements of the individual correlation matrices, R_i.
lmekin
, geeglm
# Get dataset library(kinship2) library(mvtnorm) data(minnbreast) breastpeda <- with(minnbreast[order(minnbreast$famid), ], pedigree(id, fatherid, motherid, sex, status=(cancer& !is.na(cancer)), affected=proband, famid=famid)) set.seed(10) nfam <- 6 breastped <- breastpeda[1:nfam] # Simulate a response # Make dataset for lme4 df <- lapply(1:nfam, function(xx) { as.data.frame(breastped[xx]) }) mydata <- do.call(rbind, df) mydata$famid <- rep(1:nfam, times=unlist(lapply(df, nrow))) y <- lapply(1:nfam, function(xx) { x <- breastped[xx] rmvtnorm.pedigree(1, x, h2=0.3, c2=0) }) yy <- unlist(y) library(geepack) geekin(yy ~ 1, id=mydata$famid, varlist=list(2*kinship(breastped)))#> #> Call: #> geekin(formula = yy ~ 1, id = mydata$famid, varlist = list(2 * #> kinship(breastped))) #> #> Coefficients: #> (Intercept) #> -0.1709465 #> #> Degrees of Freedom: 225 Total (i.e. Null); 224 Residual #> #> Scale Link: identity #> Estimated Scale Parameters: [1] 0.8873601 #> #> Correlation: Structure = userdefined Link = identity #> Estimated Correlation Parameters: #> alpha:1 #> 0.2659875 #> #> Number of clusters: 6 Maximum cluster size: 47 #># lmekin(yy ~ 1 + (1|id), data=mydata, varlist=list(2*kinship(breastped)),method="REML")